Queuing for Credit:

INCREASING THE REACH OF MICROFINANCE THROUGH SEQUENTIAL GROUP LENDING

Dr. Kumar Aniket *University of Cambridge*

North American Summer Meeting of the Econometric Society 2011 Washington University in St. Louis

12th June 2011

Introduction

•00000

Kumar Aniket

Labortaory Experiment on Sequential Group Lending *Kumar Aniket & Donna Harris*

MICROFINANCE

Introduction

000000

Reccurent theme: individuals with negligible wealth that are too poor to borrow become *credit-worthy* if they *borrow collectively* under *joint-liability contract*

Group Lending: borrow in groups

Joint-liability: inter-linked contracts

- Collateral aligns borrower's incentive with lender's
- Poor with no collateralisable wealth left out of credit market
- Joint-liability aligns borrowers' incentive with lender's

FIRST WAVE

Introduction

000000

Compares joint liability with individual lending in terms of lending efficiency

Strands of the literature

Adverse Selection

Varian (1990), Ghatak (1999, 2000), Van Tassel (1999),
 Aghion & Gollier (2000)

Moral Hazard

Ghatak (1999), Stiglitz (1990), Conning (2000)

Auditing and Enforcement

• Besley & Coate (1995), Ghatak (1999)

Introduction

000000

CRITICISM OF THE FIRST WAVE

- Pitt & Khandkar (1998), Aghion & Morduch (2000), Karlan and Morduch (2009)
 - Results from *impact evaluation* exercise gloomy
 - Group lending does not do always do better than individual lending
 - Theory literature under estimates the *practical problems* associated with group lending
 - Various mechanisms, other than group lending, used in microfinance

SECOND WAVE

Introduction

000000

Look beyond joint liability at the internal mechanism of group lending

Sjostrom and Rai (2005): cross-reporting

Jain and Mansuri (2003): periodicity of loans

Aniket (2007): Role of Savings, negative assortative matching in wealth

Introduction

00000

MORAL HAZARD STRAND

Recurrent Theme: it is more efficient to *incentivize effort collectively* for the group rather than individually

Ghatak (1999): incentivizing effort less expensive

Varian (1990): collective project choices more prudent

Conning (2000): incentivizing complementary tasks leads to multiple equilibria

ENVIRONMENT

- \odot opportunity cost of capital ρ
- ⊙ Impoverished Agent *k*
 - Risk neutral
 - o Cash wealth 0
 - Reservation income 0

BORROWER'S PROJECT & EFFORT LEVEL

o Borrower's project

Environment

00000

1 unit of capital
$$\longrightarrow \begin{cases} x_s = \bar{x} & \text{with probability } \pi^i \\ x_f = 0 & \text{with probability } (1 - \pi^i) \end{cases}$$

• Borrower chooses effort level $i = \{H, L\}$

$$\pi^{i} = \begin{cases} \pi^{li} & ext{(High effort level)} \\ \pi^{l} & ext{(Low effort level)} \end{cases}$$

- Borrower's effort unobservable
- Agent's reservation income is 0

EFFORT LEVEL & PRIVATE BENEFITS

Effort	Cost of action	Private Benefits
High	0	0
Low	0	B(c)

- ⊙ Monitoring with intensity *c* curtails private benefits *B*
 - \circ cost of monitoring with intensity c is c
 - o monitoring is unobservable
- Private benefits are non transferable amongst agents

MONITORING

Assumption (Monitoring function)

- i. B(0) > 0
- ii. $B(c) \geqslant B(c + \varepsilon) \geqslant 0$ for all $c, \varepsilon \geqslant 0$

ENVIRONMENT

- \odot opportunity cost of capital ρ
- ⊙ Impoverished Agent *k*
 - Risk neutral
 - Cash wealth 0
 - o Reservation income 0
- Lender
 - Risk neutral
 - No access to monitoring technology
 - Cost of capital ρ
 - Zero profit condition

Lab Experiment

INDIVIDUAL LENDING: CONSTRAINTS

Contract with outcome contingent payoffs (b_s, b_f)

$$E[b_i \mid H] \geqslant 0 \tag{PC}$$

$$E[b_i \mid H] \geqslant E[b_i \mid L] + B(0) \tag{ICC_e}$$

$$b_i \geqslant 0; i = \{s, f\} \tag{LL}$$

Optimal Contract:

$$b_s = \frac{B(0)}{\Lambda \pi}, b_f = 0$$

Using Lender's zero profit condition

$$E[x_i \mid H] \geqslant \rho + E[b_i \mid H]$$
 (L-ZPC)

$$\bar{x} \geqslant \left[\frac{\rho}{\pi^h} + \frac{B(0)}{\Lambda \pi} \right] = \bar{x}_{ind}$$

threshold project financed under simultaneous group lending

SIMULTANEOUS LENDING: TIMINGS

$$t=0$$
 $(b_{ss},b_{sf},b_{fs},b_{ff})$ Group loan contract offered
 $Project \ initiated$ $t=1$ (c_1,c_2) Borrowers choose monitoring intensity

t = 2 (e_1, e_2) Borrowers choose effort level

t = 3 Project outcome realised Borrowers obtain payoffs

SIMULTANEOUS LENDING: CONSTRAINTS

Each borrower's individual ICC_e for subgame $\xi(c,c)$

$$\pi^{h^2}b_{ss} \geqslant \pi^{l^2}b_{ss} + B(c)$$

$$b_{ss} \geqslant \frac{B(c)}{\pi^h \Delta \pi}$$
 (Condition 1)

Cost of inducing high effort is decreasing in monitoring intensity

• Group's Collective ICC_{e.c}:

$$\pi^{h^2} b_{ss} - c \geqslant \pi^{l^2} b_{ss} + B(0)$$

$$b_{ss} \geqslant \frac{B(0) + c}{\pi^{h^2} - \pi^{l^2}}$$
 (Condition 2)

"good" versus "bad" equilibrium

Cost of satisfying both task simultaneously increasing in monitoring intensity

Figure: Monitoring Intensities in Group lending

Lab Experiment

Condition 1 & 2

$$b_{ss} = \frac{B(c_{sim})}{\pi^h \Delta \pi} = \frac{B(0) + c_{sim}}{\pi^{h^2} - \pi^{l^2}}$$
$$B(c_{sim}) = \alpha(B(0) + c_{sim}); \quad \alpha = \frac{\pi^h}{\pi^h + \pi^l}$$

 c_{sim} is the monitoring intensity that minimises b_{ss}

Using the lender's zero profit condition

$$E[x_i \mid HH] \geqslant \rho + E[b_{ij} \mid HH]$$

$$\bar{x} \geqslant \left[\frac{\rho}{\pi^h} + \frac{B(c_{sim})}{\Delta \pi} \right] = \bar{x}_{sim}$$
(L-ZPC)

threshold project financed under simultaneous group lending

SEQUENTIAL LENDING: TIMINGS

t = 0		Group loan contract (b_{ss}, b_{sf}, b_{ff}) offered	
t = 1 $t = 2$ $t = 3$	c ₂ e ₁	Project initiated by Borrower 1 Borrower 2 choose monitoring intensity Borrower 1 choose effort level Project outcome realised	
		If project fails, game terminates, borrowers get b_f If project succeeds, the game continues	
t = 4 $t = 5$ $t = 6$	<i>c</i> ₁ <i>e</i> ₂	Project initiated by Borrower 2 Borrower 1 choose monitoring intensity Borrower 2 choose effort level Project outcome realised Borrowers obtain payoffs	

SEQUENTIAL LENDING: CONSTRAINTS

Each borrower's individual ICC_{e.c}

$$b_{ss} \geqslant \frac{1}{\pi^h \Lambda \pi} \max \left[B(c), c \right]$$
 (Condition 3)

each task incentivized individually group's collective incentive compatibility condition slack

Condition 3

$$b_{ss} = \frac{B(c_{seq})}{\pi^h \Delta \pi} = \frac{c_{seq}}{\pi^h \Delta \pi}$$

 c_{seq} is the monitoring intensity that minimises b_{ss}

Using the lender's zero profit condition

$$E[x_i \mid HH] \geqslant \rho + E[b_{ij} \mid HH]$$

$$\pi^h (1 + \pi^h) \bar{x} \geqslant (1 + \pi^h) \rho + \pi^{h^2} \cdot 2b_{ss}$$

$$\bar{x} \geqslant \left[\frac{\rho}{\pi^h} + \frac{2}{1 + \pi^h} \cdot \frac{B(c_{seq})}{\Delta \pi} \right] = \bar{x}_{seq}$$
(L-ZPC)

threshold project financed under sequential group lending

Figure: Monitoring Intensities in Group lending

0

COLLUSION

- Sequential Lending temporally separates the decisions on task
 Interpret Condition 2 in terms of collusion
 - Condition 2 binds in simultaneous lending

collusion rents without side-contracting abilities

- Condition 2 is *slack* in sequential Lending

collusion rents require explicit side-contracting abilities

inability to side-contract exploited to lower borrower's rents

Figure: c_{sim} and c_{seq} as Monitoring Efficiency Increases

VARYING MONITORING TECHNOLOGY

- As monitoring becomes more efficient, both \bar{x}_{sim} and \bar{x}_{seq} decrease
- Threshold project lower under sequential lending if monitoring is sufficiently efficient
- With extremely efficient monitoring technology,
 simultaneous lending: some socially viable project not feasible
 sequential lending: all socially viable projects feasible

LAB EXPERIMENT

Question: Does lending sequentially reduce the collateral (wealth) requirement?

Can a given repayment rate be sustained with lower a collateral requirement under sequentially lending?

Does sequential lending induce greater peer-monitoring than sequential lending?

DESIGN

Project: Invest 50 token and obtain 140 tokens if successful.

Endowment: Players endowed with w tokens and borrow (50 - w) from lender, where $w = \{10, 20, 30, 40\}$

Monitoring Choice: Choose *c*, the proportion of ex post payoff committed to monitoring cost

Effort Choice: (H,L) such that $p^h = 0.75$, $p^l = 0.25$

With low effort, borrower obtains private benefit

 $\begin{cases} 50 \text{ tokens} & \text{with probability } 1 - c \\ 0 & \text{with probability } c \end{cases}$

DESIGN

Borrower's payoff: The final expect payoff of borrower 1 with peer borrower 2

$$E[\Pi_1 \mid e_1, e_2, c_1, c_2, w_1] = (1 - c_1) \left(p_1^{e_1} p_2^{e_2} \left[\bar{x} - (1 - w_1) \right] + (1 - c_2) B \cdot I \right)$$

$$\bar{x} = 140$$

$$B = 50$$

 c_1 , c_2 are the monitoring choices of borrower 1 and 2

 e_1 , e_2 are the effort choices of borrower 1 and 2

 w_1 is borrower 1's wealth endowment

$$I = 1 \text{ if } e_1 = H \text{ and } i = 0 \text{ if } e_1 = L$$

VERY PRELIMINARY RESULTS

We ran experiments for simultaneous lending (w = 10 and w = 20) and sequential lending (w = 10) where each player played 10 rounds.

- For endowment w = 10, sequential lending induces higher monitoring intensity than simultaneous lending
- In simultaneous lending, higher monitoring intensity is induced as endowment increases from w = 10 to w = 20