Queuing for Credit:

Increasing the Reach of Microfinance Through Sequential Group Lending

Dr. Kumar Aniket

University of Cambridge

North American Summer Meeting of the Econometric Society 2011
Washington University in St. Louis

12th June 2011
Queuing for Credit: Increasing the Reach of Microfinance Through Sequential Group Lending

Kumar Aniket

Labortaory Experiment on Sequential Group Lending

Kumar Aniket & Donna Harris
Microfinance

Recurrent theme: individuals with negligible wealth that are too poor to borrow become *credit-worthy* if they *borrow collectively* under *joint-liability contract*

Group Lending: *borrow in groups*

Joint-liability: *inter-linked contracts*

- Collateral aligns borrower’s incentive with lender’s
- Poor with no collateralisable wealth left out of credit market
- *Joint-liability* aligns borrowers’ incentive with lender’s
FIRST WAVE

Compares joint liability with individual lending in terms of lending efficiency

Strands of the literature

Adverse Selection

Moral Hazard
- Ghatak (1999), Stiglitz (1990), Conning (2000)

Auditing and Enforcement
CRITICISM OF THE FIRST WAVE

 • Results from *impact evaluation* exercise gloomy
 • Group lending does not do always do better than individual lending
 • Theory literature under estimates the *practical problems* associated with group lending
 • *Various mechanisms*, other than group lending, used in microfinance
SECOND WAVE

Look beyond joint liability at the internal mechanism of group lending

Sjostrom and Rai (2005): cross-reporting
Jain and Mansuri (2003): periodicity of loans
Aniket (2007): Role of Savings, negative assortative matching in wealth
Moral Hazard Strand

Recurrent Theme: it is more efficient to incentivize effort collectively for the group rather than individually

Ghatak (1999): incentivizing effort less expensive

Varian (1990): collective project choices more prudent

Conning (2000): incentivizing complementary tasks leads to multiple equilibria
Environment

- opportunity cost of capital ρ

- Impoverished Agent k
 - Risk neutral
 - Cash wealth 0
 - Reservation income 0

Lender

Risk neutral
No access to monitoring technology
Faces a competitive loan market \Rightarrow zero profit condition

Project that succeeds with probability π^i

$$\rho = \pi^i r$$
BORROWER’S PROJECT & EFFORT LEVEL

- **Borrower’s project**

 1 unit of capital $\rightarrow \begin{cases}
 x_s = \bar{x} & \text{with probability } \pi^i \\
 x_f = 0 & \text{with probability } (1 - \pi^i)
 \end{cases}$

- **Borrower chooses effort level** $i = \{H, L\}$

 \[\pi^i = \begin{cases}
 \pi^h & \text{(High effort level)} \\
 \pi^l & \text{(Low effort level)}
 \end{cases} \]

- **Borrower’s effort unobservable**

- **Agent’s reservation income is 0**

© Kumar Aniket 2011
Effort Level & Private Benefits

<table>
<thead>
<tr>
<th>Effort</th>
<th>Cost of action</th>
<th>Private Benefits</th>
</tr>
</thead>
<tbody>
<tr>
<td>High</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Low</td>
<td>0</td>
<td>$B(c)$</td>
</tr>
</tbody>
</table>

- Monitoring with intensity c curtails private benefits B
 - cost of monitoring with intensity c is c
 - monitoring is unobservable
- Private benefits are non transferable amongst agents
Assumption (Monitoring function)

i. \(B(0) > 0 \)

ii. \(B(c) \geq B(c + \varepsilon) \geq 0 \) for all \(c, \varepsilon \geq 0 \)
ENVIRONMENT

- opportunity cost of capital ρ

- Impoverished Agent k
 - Risk neutral
 - Cash wealth 0
 - Reservation income 0

- Lender
 - Risk neutral
 - No access to monitoring technology
 - Cost of capital ρ
 - Zero profit condition
INDIVIDUAL LENDING: CONSTRAINTS

Contract with outcome contingent payoffs \((b_s, b_f)\)

\[
E[b_i | H] \geq 0 \quad \text{(PC)}
\]

\[
E[b_i | H] \geq E[b_i | L] + B(0) \quad \text{(ICC}_e\text{)}
\]

\[
b_i \geq 0; \ i = \{s,f\} \quad \text{(LL)}
\]

Optimal Contract:

\[
b_s = \frac{B(0)}{\Delta \pi}, \ b_f = 0
\]

Using Lender’s zero profit condition

\[
E[x_i | H] \geq \rho + E[b_i | H] \quad \text{(L-ZPC)}
\]

\[
\bar{x} \geq \left[\frac{\rho}{\pi^h} + \frac{B(0)}{\Delta \pi} \right] = \bar{x}_{\text{ind}}
\]

threshold project financed under simultaneous group lending
Simultaneous Lending: Timings

\[t = 0 \quad (b_{ss}, b_{sf}, b_{fs}, b_{ff}) \quad \text{Group loan contract offered} \]

\[t = 1 \quad (c_1, c_2) \quad \text{Project initiated} \]

\[t = 2 \quad (e_1, e_2) \quad \text{Borrowers choose effort level} \]

\[t = 3 \quad \text{Project outcome realised} \]

\[\text{Borrowers obtain payoffs} \]
SIMULTANEOUS LENDING: CONSTRAINTS

- Each borrower’s individual ICC e for subgame $\xi(c,c)$

$$\pi^h b_{ss} \geq \pi^l b_{ss} + B(c)$$

$$b_{ss} \geq \frac{B(c)}{\pi^h \Delta \pi} \quad \text{(Condition 1)}$$

Cost of inducing high effort is decreasing in monitoring intensity

- Group’s Collective ICC e,c:

$$\pi^h b_{ss} - c \geq \pi^l b_{ss} + B(0)$$

$$b_{ss} \geq \frac{B(0) + c}{\pi^h \pi^l - \pi^l} \quad \text{(Condition 2)}$$

“good” versus “bad” equilibrium

Cost of satisfying both tasks simultaneously increasing in monitoring intensity

© Kumar Aniket 2011
Figure: Monitoring Intensities in Group lending
\(c_{sim} \) & \(\bar{x}_{sim} \)

Condition 1 & 2

\[
\begin{align*}
 b_{ss} &= \frac{B(c_{sim})}{\pi^h \Delta \pi} = \frac{B(0) + c_{sim}}{\pi^h^2 - \pi^l^2} \\
 B(c_{sim}) &= \alpha (B(0) + c_{sim}); \quad \alpha = \frac{\pi^h}{\pi^h + \pi^l}
\end{align*}
\]

\(c_{sim} \) is the monitoring intensity that minimises \(b_{ss} \)

Using the lender’s zero profit condition

\[
E[x_i | HH] \geq \rho + E[b_{ij} | HH] \quad (L-ZPC)
\]

\[
\bar{x} \geq \left[\frac{\rho}{\pi^h} + \frac{B(c_{sim})}{\Delta \pi} \right] = \bar{x}_{sim}
\]

threshold project financed under simultaneous group lending
Sequential Lending: Timings

$t = 0$
Group loan contract (b_{ss}, b_{sf}, b_{ff}) offered

Project initiated by Borrower 1

$t = 1$
c_2
Borrower 2 choose monitoring intensity

$t = 2$
e_1
Borrower 1 choose effort level

$t = 3$
Project outcome realised

If project fails, game terminates, borrowers get b_f

If project succeeds, the game continues

Project initiated by Borrower 2

$t = 4$
c_1
Borrower 1 choose monitoring intensity

$t = 5$
e_2
Borrower 2 choose effort level

$t = 6$
Project outcome realised

Borrowers obtain payoffs
SEQUENTIAL LENDING: CONSTRAINTS

Each borrower’s individual ICC\(_{e,c}\)

\[b_{ss} \geq \frac{1}{\pi^h \Delta \pi} \max [B(c), c] \] \hspace{1cm} (Condition 3)

each task incentivized individually
group’s collective incentive compatibility condition slack
\(c_{\text{seq}} \) & \(\bar{x}_{\text{seq}} \)

Condition 3

\[
 b_{ss} = \frac{B(c_{\text{seq}})}{\pi^h \Delta \pi} = \frac{c_{\text{seq}}}{\pi^h \Delta \pi}
\]

\(c_{\text{seq}} \) is the monitoring intensity that minimises \(b_{ss} \)

Using the lender’s zero profit condition

\[
 E[x_i \mid HH] \geq \rho + E[b_{ij} \mid HH] \quad \text{(L-ZPC)}
\]

\[
 \pi^h (1 + \pi^h) \bar{x} \geq (1 + \pi^h) \rho + \pi^h \Delta \pi \cdot 2b_{ss}
\]

\[
 \bar{x} \geq \left[\frac{\rho}{\pi^h} + \frac{2}{1 + \pi^h} \cdot \frac{B(c_{\text{seq}})}{\Delta \pi} \right] = \bar{x}_{\text{seq}}
\]

threshold project financed under sequential group lending
Figure: Monitoring Intensities in Group lending
Collusion

- Sequential Lending temporally separates the decisions on task

Interpret **Condition 2** in terms of collusion

- Condition 2 *binds* in simultaneous lending

 collusion rents without side-contracting abilities

- Condition 2 is *slack* in sequential Lending

 collusion rents require explicit side-contracting abilities

 inability to side-contract exploited to lower borrower’s rents
Figure: c_{sim} and c_{seq} as Monitoring Efficiency Increases
VARYING MONITORING TECHNOLOGY

- As *monitoring becomes more efficient*, both \bar{x}_{sim} and \bar{x}_{seq} decrease
- *Threshold project* lower under sequential lending if monitoring is *sufficiently efficient*
- With *extremely efficient monitoring technology*,
 simultaneous lending: some socially viable project not feasible
 sequential lending: all socially viable projects feasible

© Kumar Aniket 2011
LAB EXPERIMENT

Question: Does lending sequentially reduce the collateral (wealth) requirement?

Can a given repayment rate be sustained with lower collateral requirement under sequentially lending?

Does sequential lending induce greater peer-monitoring than sequential lending?
DESIGN

Project: Invest 50 token and obtain 140 tokens if successful.

Endowment: Players endowed with w tokens and borrow $(50 - w)$ from lender, where $w = \{10, 20, 30, 40\}$

Monitoring Choice: Choose c, the *proportion of ex post payoff committed to monitoring cost*

Effort Choice: (H, L) such that $p^h = 0.75, \ p^l = 0.25$

With low effort, borrower obtains private benefit

\[
\begin{align*}
50 \text{ tokens} & \quad \text{with probability } 1 - c \\
0 & \quad \text{with probability } c
\end{align*}
\]
DESIGN

Borrower’s payoff: The final expect payoff of borrower 1 with peer borrower 2

\[
E[\Pi_1 \mid e_1, e_2, c_1, c_2, w_1] = (1 - c_1) \left(p_1^{e_1} p_2^{e_2} [\bar{x} - (1 - w_1)] + (1 - c_2)B \cdot I \right)
\]

\[\bar{x} = 140\]
\[B = 50\]

\[c_1, c_2\] are the monitoring choices of borrower 1 and 2
\[e_1, e_2\] are the effort choices of borrower 1 and 2
\[w_1\] is borrower 1’s wealth endowment
\[I = 1\] if \(e_1 = H\) and \(i = 0\) if \(e_1 = L\)
Very Preliminary Results

We ran experiments for simultaneous lending \((w = 10 \text{ and } w = 20)\) and sequential lending \((w = 10)\) where each player played 10 rounds.

- For endowment \(w = 10\), sequential lending induces *higher* monitoring intensity than simultaneous lending.
- In simultaneous lending, *higher* monitoring intensity is induced as endowment increases from \(w = 10\) to \(w = 20\).